Common Eigenvalue Problem and Periodic Schrödinger Operators
نویسندگان
چکیده
منابع مشابه
Nonclassical Eigenvalue Asymptotics for Operators of Schrödinger
which depends on the volume u)n of the unit sphere in R n and the beta function. Assuming /3 < 2 we see that integral (2) becomes divergent if V (x) vanishes to a sufficiently high order. The simplest such potential is V(x,y) = \x\\y\P o n R n + R m . The Weyl (volume counting) principle, when applied to the corresponding Schrödinger operator — A-hV(x), fails to predict discrete spectrum below ...
متن کاملEdge currents and eigenvalue estimates for magnetic barrier Schrödinger operators
We study two-dimensional magnetic Schrödinger operators with a magnetic field that is equal to b > 0 for x > 0 and −b for x < 0. This magnetic Schrödinger operator exhibits a magnetic barrier at x = 0. The unperturbed system is invariant with respect to translations in the ydirection. As a result, the Schrödinger operator admits a direct integral decomposition. We analyze the band functions of ...
متن کاملPeriodic Schrödinger Operators with Local Defects and Spectral Pollution
This article deals with the numerical calculation of eigenvalues of perturbed periodic Schrödinger operators located in spectral gaps. Such operators are encountered in the modeling of the electronic structure of crystals with local defects, and of photonic crystals. The usual finite element Galerkin approximation is known to give rise to spectral pollution. In this article, we give a precise d...
متن کاملEigenvalue Problem for Schrödinger Operators and Time-Dependent Harmonic Oscillator
It is shown that the eigenvalue problem for the Hamiltonians of the standard form, H = p/(2m) + V (x), is equivalent to the classical dynamical equation for certain harmonic oscillators with time-dependent frequency. This is another indication of the central role played by time-dependent harmonic oscillators in quantum mechanics. The utility of the known results for eigenvalue problem in the so...
متن کاملConvergence of Schrödinger Operators
For a large class, containing the Kato class, of real-valued Radon measures m on R the operators −∆ + ε∆ + m in L(R, dx) tend to the operator −∆ +m in the norm resolvent sense, as ε tends to zero. If d ≤ 3 and a sequence (μn) of finite real-valued Radon measures on R converges to the finite real-valued Radon measure m weakly and, in addition, supn∈N μ ± n (R) < ∞, then the operators −∆ + ε∆ + μ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1999
ISSN: 0022-1236
DOI: 10.1006/jfan.1999.3406